<table>
<thead>
<tr>
<th>pICH</th>
<th>fluorescence units a</th>
<th>fluorescence units b</th>
<th>fluorescence units c</th>
<th>fluorescence units a x 0.7</th>
<th>fluorescence units b x 0.7</th>
<th>fluorescence units c x 0.7</th>
<th>fluorescence units mean</th>
<th>SD fluorescence</th>
<th>protoplasts d %</th>
<th>protoplasts e %</th>
<th>protoplasts % mean</th>
<th>SD protoplasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>14833</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>1.4</td>
<td>4.9</td>
<td>0.7</td>
<td>2.3</td>
<td>2.3</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>0.1</td>
</tr>
<tr>
<td>15011</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2.8</td>
<td>4.2</td>
<td>2.8</td>
<td>3.3</td>
<td>0.8</td>
<td>4.0</td>
<td>3.0</td>
<td>3.5</td>
<td>0.7</td>
</tr>
<tr>
<td>17266</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
<td>0.7</td>
<td>0.7</td>
<td>1.2</td>
<td>0.8</td>
<td>3.0</td>
<td>1.4</td>
<td>2.2</td>
<td>1.1</td>
</tr>
<tr>
<td>15466</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>7.7</td>
<td>8.4</td>
<td>8.4</td>
<td>8.2</td>
<td>0.4</td>
<td>16.0</td>
<td>10.0</td>
<td>13.0</td>
<td>4.2</td>
</tr>
<tr>
<td>15900</td>
<td>53</td>
<td>42</td>
<td>65</td>
<td>37.1</td>
<td>29.4</td>
<td>45.5</td>
<td>37.3</td>
<td>8.1</td>
<td>52.0</td>
<td>53.0</td>
<td>52.5</td>
<td>0.7</td>
</tr>
<tr>
<td>16989</td>
<td>54</td>
<td>55</td>
<td>46</td>
<td>37.8</td>
<td>38.5</td>
<td>32.2</td>
<td>36.2</td>
<td>3.5</td>
<td>48.0</td>
<td>46.0</td>
<td>47.0</td>
<td>1.4</td>
</tr>
<tr>
<td>17200</td>
<td>14</td>
<td>18</td>
<td>13</td>
<td>9.8</td>
<td>12.6</td>
<td>9.1</td>
<td>10.5</td>
<td>1.9</td>
<td>10.0</td>
<td>9.0</td>
<td>9.5</td>
<td>0.7</td>
</tr>
<tr>
<td>14030</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2.1</td>
<td>2.8</td>
<td>3.5</td>
<td>2.8</td>
<td>0.7</td>
<td>1.0</td>
<td>1.5</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>15477</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.7</td>
<td>0.7</td>
<td>1.4</td>
<td>0.9</td>
<td>0.4</td>
<td>2.0</td>
<td>1.0</td>
<td>1.5</td>
<td>0.7</td>
</tr>
<tr>
<td>16877</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>7.7</td>
<td>8.4</td>
<td>9.1</td>
<td>8.4</td>
<td>0.7</td>
<td>10.0</td>
<td>6.0</td>
<td>8.0</td>
<td>2.8</td>
</tr>
<tr>
<td>15025</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>5.6</td>
<td>5.6</td>
<td>3.5</td>
<td>4.9</td>
<td>1.2</td>
<td>4.0</td>
<td>9.0</td>
<td>6.5</td>
<td>3.5</td>
</tr>
<tr>
<td>15488</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>2.8</td>
<td>8.4</td>
<td>3.5</td>
<td>4.9</td>
<td>3.1</td>
<td>4.0</td>
<td>1.0</td>
<td>2.5</td>
<td>2.1</td>
</tr>
<tr>
<td>15755</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>5.6</td>
<td>3.5</td>
<td>6.3</td>
<td>5.1</td>
<td>1.5</td>
<td>1.0</td>
<td>4.0</td>
<td>2.5</td>
<td>2.1</td>
</tr>
<tr>
<td>15034</td>
<td>19</td>
<td>17</td>
<td>20</td>
<td>13.3</td>
<td>11.9</td>
<td>14</td>
<td>13.1</td>
<td>1.1</td>
<td>21.0</td>
<td>15.0</td>
<td>18.0</td>
<td>4.2</td>
</tr>
<tr>
<td>15922</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>2.1</td>
<td>4.9</td>
<td>7.7</td>
<td>4.9</td>
<td>2.8</td>
<td>4.0</td>
<td>2.0</td>
<td>3.0</td>
<td>1.4</td>
</tr>
<tr>
<td>15499</td>
<td>43</td>
<td>29</td>
<td>38</td>
<td>30.1</td>
<td>20.3</td>
<td>26.6</td>
<td>25.7</td>
<td>5.0</td>
<td>43.0</td>
<td>42.0</td>
<td>42.5</td>
<td>0.7</td>
</tr>
<tr>
<td>16433</td>
<td>55</td>
<td>47</td>
<td>66</td>
<td>38.5</td>
<td>32.9</td>
<td>46.2</td>
<td>39.2</td>
<td>6.7</td>
<td>26.0</td>
<td>30.0</td>
<td>28.0</td>
<td>2.8</td>
</tr>
<tr>
<td>17144</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>7.7</td>
<td>6.3</td>
<td>7.0</td>
<td>0.7</td>
<td>9.0</td>
<td>10.0</td>
<td>9.5</td>
<td>0.7</td>
</tr>
<tr>
<td>15041</td>
<td>41</td>
<td>38</td>
<td>50</td>
<td>28.7</td>
<td>26.6</td>
<td>35</td>
<td>30.1</td>
<td>4.4</td>
<td>20.0</td>
<td>25.0</td>
<td>22.5</td>
<td>3.5</td>
</tr>
<tr>
<td>16100</td>
<td>57</td>
<td>63</td>
<td>65</td>
<td>39.9</td>
<td>44.1</td>
<td>45.5</td>
<td>43.2</td>
<td>2.9</td>
<td>46.0</td>
<td>39.0</td>
<td>42.5</td>
<td>4.9</td>
</tr>
<tr>
<td>16191</td>
<td>77</td>
<td>74</td>
<td>77</td>
<td>53.9</td>
<td>51.8</td>
<td>53.9</td>
<td>53.2</td>
<td>1.2</td>
<td>75.0</td>
<td>70.0</td>
<td>72.5</td>
<td>3.5</td>
</tr>
<tr>
<td>16200</td>
<td>87</td>
<td>85</td>
<td>77</td>
<td>60.9</td>
<td>59.5</td>
<td>53.9</td>
<td>58.1</td>
<td>3.7</td>
<td>81.0</td>
<td>79.0</td>
<td>80.0</td>
<td>1.4</td>
</tr>
<tr>
<td>15860</td>
<td>62</td>
<td>79</td>
<td>73</td>
<td>43.4</td>
<td>55.3</td>
<td>51.1</td>
<td>49.9</td>
<td>6.0</td>
<td>59.0</td>
<td>54.0</td>
<td>56.5</td>
<td>3.5</td>
</tr>
<tr>
<td>16141</td>
<td>57</td>
<td>48</td>
<td>42</td>
<td>39.9</td>
<td>33.6</td>
<td>29.4</td>
<td>34.3</td>
<td>5.3</td>
<td>35.0</td>
<td>37.0</td>
<td>36.0</td>
<td>1.4</td>
</tr>
<tr>
<td>17494</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>0.35</td>
<td>0.7</td>
<td>1.4</td>
<td>0.8</td>
<td>0.5</td>
<td>2.0</td>
<td>2.4</td>
<td>2.2</td>
<td>0.3</td>
</tr>
<tr>
<td>17466</td>
<td>6</td>
<td>5</td>
<td>15</td>
<td>4.2</td>
<td>3.5</td>
<td>10.5</td>
<td>6.1</td>
<td>3.9</td>
<td>15.0</td>
<td>19.0</td>
<td>17.0</td>
<td>2.8</td>
</tr>
<tr>
<td>15661</td>
<td>13</td>
<td>13</td>
<td>27</td>
<td>9.1</td>
<td>9.1</td>
<td>18.9</td>
<td>12.4</td>
<td>5.7</td>
<td>35.0</td>
<td>36.0</td>
<td>35.5</td>
<td>0.7</td>
</tr>
<tr>
<td>18523</td>
<td>97</td>
<td>75</td>
<td>50</td>
<td>67.9</td>
<td>52.5</td>
<td>35</td>
<td>51.8</td>
<td>16.5</td>
<td>61.0</td>
<td>56.0</td>
<td>58.5</td>
<td>3.5</td>
</tr>
<tr>
<td>17474</td>
<td>107</td>
<td>89</td>
<td>96</td>
<td>74.9</td>
<td>62.3</td>
<td>67.2</td>
<td>68.1</td>
<td>6.4</td>
<td>82.0</td>
<td>80.0</td>
<td>81.0</td>
<td>1.4</td>
</tr>
<tr>
<td>18535</td>
<td>134</td>
<td>120</td>
<td>122</td>
<td>93.8</td>
<td>84</td>
<td>85.4</td>
<td>87.7</td>
<td>5.3</td>
<td>90.0</td>
<td>94.0</td>
<td>92.0</td>
<td>2.8</td>
</tr>
<tr>
<td>18722</td>
<td>126</td>
<td>130</td>
<td>140</td>
<td>88.2</td>
<td>91</td>
<td>98</td>
<td>92.4</td>
<td>5.0</td>
<td>86.0</td>
<td>84.0</td>
<td>85.0</td>
<td>1.4</td>
</tr>
<tr>
<td>17272</td>
<td>137</td>
<td>145</td>
<td>149</td>
<td>95.9</td>
<td>101.5</td>
<td>104.3</td>
<td>100.6</td>
<td>4.3</td>
<td>98.0</td>
<td>94.0</td>
<td>96.0</td>
<td>2.8</td>
</tr>
<tr>
<td>18000</td>
<td>149</td>
<td>140</td>
<td>143</td>
<td>104.3</td>
<td>98</td>
<td>100.1</td>
<td>100.8</td>
<td>3.2</td>
<td>90.0</td>
<td>96.0</td>
<td>93.0</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Supplementary Table 1 Quantification of the efficiency of initiation of viral replication of the original and modified GFP-expressing viral vectors. For each construct, GFP fluorescence was determined for 3 separate infiltrations (a-c). Fluorescence values were multiplied by 0.7 in order to be visualized at the same scale as protoplast counts. The percentage of protoplasts expressing GFP was counted twice (d and e) for each construct. SD, standard variation.
protoplasts expressing GfP was counted twice (d and e) for each construct. SD, standard variation.