Dr. Manuel de la Mata

Cargo Conicet: Investigador Adjunto
Área: Biología Molecular y Celular
Tema de Trabajo: Funciones y mecanismos de RNAs no codificantes.
Descripción de trabajo: Nuestro grupo estudia la función y metabolismo de RNAs no codificantes (ncRNAs) específicos. Entre ellos los microRNAs (miRNAs), que son RNAs pequeños que silencian RNAs mensajero (mRNAs) blanco, y RNAs circulares (circRNAs), cuya función y mecanismos son mayormente desconocidos. Nuestro grupo está explorando los mecanismos que afectan la dinámica de la expresión de miRNAs, algunos de los cuales podrían estar mediados por circRNAs.

• Target RNAs Strike Back on MicroRNAs. Fuchs Wightman F, Giono LE, Fededa JP, de la Mata
M. (2018). Front Genet. 9:435. doi: 10.3389/fgene.2018.00435.
• Turning the table on miRNAs. de la Mata M and Großhans H. (2018). Nat Struct Mol Biol.
25(3):195‐197.
• Potent degradation of neuronal miRNAs induced by highly complementary targets. de la
Mata M., Gaidatzis D., Vitanescu M., Stadler M.B., Wentzel C., Scheiffele P., Filipowicz W.,
Großhans H. (2015). EMBO Reports 16, 500‐511.
• How Slow RNA Polymerase II Elongation Favors Alternative Exon Skipping. Dujardin G,
Lafaille C, de la Mata M, Marasco LE, Muñoz MJ, Le Jossic‐Corcos C, Corcos L, Kornblihtt AR.
(2014). Mol Cell 54, 683‐690.
• RNA polymerase II elongation at the crossroads of transcription and alternative splicing. de
la Mata, M., Muñoz, M.J., Alló, M., Fededa, J. P., Schor, I.E., and Kornblihtt, A.R. (2011).
Genetics Research International. doi:10.4061/2011/309865
• Chromatin and Alternative Splicing. Alló, M., Schor, I.E., Muñoz, M.J., de la Mata, M., Agirre,
E., Valcarcel, J., Eyras, E., and Kornblihtt, A.R. (2011). Cold Spring Harb Symp Quant Biol.
doi:10.1101/sqb.2010.75.023
• First come, first served revisited: factors affecting the same alternative splicing event have
different effects on the relative rates of intron removal. de la Mata, M., Lafaille, C., and
Kornblihtt, A.R. (2010). RNA 16, 904‐912.
• The carboxy terminal domain of RNA polymerase II and alternative splicing. Muñoz, M.J., de
la Mata, M., and Kornblihtt, A.R. (2010). Trends Biochem Sci 35, 497‐504.
2
• Control of alternative splicing through siRNA‐mediated transcriptional gene silencing. Alló,
M., Buggiano, V., Fededa, J.P., Petrillo, E., Schor, I., de la Mata, M., Agirre, E., Plass, M.,
Eyras, E., Elela, S.A., Klinck, R., Chabot, B. and Kornblihtt, A.R. (2009). Nat Struct Mol Biol 16,
717‐724.
• DNA damage regulates alternative splicing through inhibition of RNA polymerase II
elongation. Muñoz, M.J., Perez Santangelo, M.S., Paronetto, M.P., de la Mata, M., Pelisch, F.,
Boireau, S., Glover‐Cutter, K., Ben‐Dov, C., Blaustein, M., Lozano, J.J., Bird, G., Bentley, D.,
Bertrand, E. and Kornblihtt, A.R. (2009). Cell 137, 708‐720.
• SF2/ASF regulates proteomic diversity by affecting the balance between translation
initiation mechanisms. Blaustein, M., Quadrana, L., Risso, G., de la Mata, M., Pelisch, F., and
Srebrow, A. (2009). J Cell Biochem 107, 826‐833.
• The transcriptional cycle of HIV‐1 in real‐time and live cells. Boireau, S., Maiuri, P., Basyuk,
E., de la Mata, M., Knezevich, A., Pradet‐Balade, B., Backer, V., Kornblihtt, A., Marcello, A.,
and Bertrand, E. (2007). J Cell Biol 179, 291‐304.
• RNA polymerase II C‐terminal domain mediates regulation of alternative splicing by SRp20.
de la Mata, M., and Kornblihtt, A.R. (2006). Nat Struct Mol Biol 13, 973‐980. Comment in:
Lynch K.W. (2006) Cotranscriptional splicing regulation: it’s not just about speed. Nat Struct
Mol Biol. 13(11):952‐3.