Cargo docente: Profesor Titular
Area: Biología Molecular y Celular
Materias de grado:Desarrollo y Diferenciación* , Organización y Función Celular (ex-QBIIA)*.
Ver EADIS
*También curso de posgrado
Cargo docente: Profesor Titular
Area: Biología Molecular y Celular
Materias de grado:Desarrollo y Diferenciación* , Organización y Función Celular (ex-QBIIA)*.
Ver EADIS
*También curso de posgrado
Cargo Conicet: Investigador Superior
Área: Biología Molecular y Celular
Tema de Trabajo: Respuestas celulares a estrés
Descripción de trabajo:
1. Context-specific functions of Notch in Drosophila blood cell progenitors Blanco-Obregon, D., Katz, M.J., Durrieu, L., Gandara, L., and Wappner, P. (2020). Dev Biol (In Press).
2. A genetic toolkit for the analysis of metabolic changes in Drosophila provides new insights into metabolic responses to stress and malignant transformation. Gandara L, Durrieu L, Behrensen C and Wappner P (2019). Scientific Reports Dec 27;9(1):19945.
3. The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases. Markolovic S, Zhuang Q, Wilkins SE, Eaton CD, Abboud MI, Katz MJ, McNeil HE, Leśniak RK, Hall C, Struwe WB, Konietzny R, Davis S, Yang M, Ge W, Benesch JLP, Kessler BM, Ratcliffe PJ, Cockman ME, Fischer R, Wappner P, Chowdhury R, Coleman ML, Schofield CJ. (2018) Nature Chemical Biology 14(7):688-695
4. Metabo-Devo: A metabolic perspective of development. Gándara L and Wappner P. (2018). Mechanisms of Development 154: 12-23.
5. Zonda is a novel early component of the autophagy pathway in Drosophila. Melani M,, Valko A, Romero NM, Aguilera MO, Acevedo JM, Bhujabal Z, Perez-Perri J, de la Riva-Carrasco RV, Katz MJ, Sorianello E, D’Alessio C, Juhász G, Johansen T, Colombo M I and Wappner P (2017). Molecular Biology of the Cell 28:3070-3081.
6. miR-190 enhances HIF-dependent responses to hypoxia in Drosophila by inhibiting the prolyl-4-hydroxylase Fatiga. De Lella Ezcurra AL; Bertolin AP; Kim K; Katz MJ; Gándara L; Misra T; Luschnig S,4; Perrimon N; Melani M and Wappner P (2016). PLoS Genetics 12(5):e1006073.
7. The TIP60 complex is a conserved coactivator of HIF1A. Perez-Perri JI, Dengler VL, Audetat KA, Pandey A, Bonner EA, Urh M, Mendez J, Daniels DL, Wappner P, Galbraith MD and Espinosa JM (2016). Cell Reports 16: 37-47.
8. Musashi mediates translational repression of the Drosophila Hypoxia Inducible Factor. Bertolin AP, Katz MJ, Yano M, Pozzi B,4, Acevedo JM, Blanco-Obregón D, Gándara L, Kanda H, Okano H, Srebrow A,4 and Wappner P (2016). Nucleic Acids Research 44:7555-67.
9. Hydroxylation and translational adaptation to stress: some answers lie beyond the STOP codon. Katz MJ, Gándara L, De Lella Ezcurra AL and Wappner P (2016). Cell Mol. Life Sci 73:1881-93.
10. Striking Oxygen Sensitivity of the Peptidylglycine alpha-Amidating Monooxygenase (PAM) in Neuroendocrine Cells. Simpson PD, Eipper BA, Katz MJ, Gandara L, Wappner P, Fischer R, Hodson EJ, Ratcliffe PJ, Masson N (2015). J. Biol Chem. 290(41):24891-901.
12. Growing with the wind. Ribosomal protein hydroxylation and cell growth. Katz MJ, Acevedo JM, Wappner P. (2014). Fly 8: 153—156.
13. Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Katz MJ, Acevedo JM, Loenarz C, Galagovsky D, Liu-Yi P, Pérez-Pepe M, Thalhammer A, Sekirnik R, Ge W, Melani M, Thomas MG, Simonetta S, Boccaccio GL, Schofield CJ, Cockman ME, Ratcliffe PJ, Wappner P. (2014). Proc Natl Acad Sci U S A. 111 (11): 425-430.
14. OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation.Singleton RS, Liu-Yi P, Formenti F, Ge W, Sekirnik R, Fischer R, Adam J, Pollard PJ, Wolf A, Thalhammer A, Loenarz C, Flashman E, Yamamoto A, Coleman ML, Kessler BM, Wappner P, Schofield CJ, Ratcliffe PJ, Cockman ME. (2014). Proc Natl Acad Sci U S A. 111 (11) 431-436.
15. The Drosophila insulin degrading enzyme restricts growth by modulating the PI3K pathway in a cell autonomous manner. Galagovsky D, Katz MJ, Acevedo JM, Sorianello E, Glavic A, Wappner P. (2014) Molecular Biology of the Cell. 25 (6) 916-924.
16. Robustness of the hypoxic response: Another job for miRNAs? Review. De Lella Ezcurra A.L., Melani M., Bertolin A.P. and Wappner P. (2012). Developmental Dynamics 241(12):1842-1848.
17. Epigenetics: New Questions in the Response to Hypoxia. Review. Perez-Perri J.I., Acevedo J. and Wappner P. (2011) International Journal of Molecular Sciences 12(7):4705-21.
18. Oxygen sensing in Drosophila: Multiple isoforms of the prolyl hydroxylase Fatiga have different capacity to regulate HIF alpha/Sima. Acevedo JM, Centanin L, Dekanty A, Wappner P. (2010). PLoS One. 5(8): e12390
19. Drosophila genome-wide screen RNAi screen identifies multiple regulators of HIF dependent transcription in hypoxia. Dekanty A., Romero N.M., Bertolin A.P., Thomas M.G., Leishman C., Perez Perri J.I., Boccaccio G.L. and Wappner P. (2010). PLoS Genetics 6(6): e1000994..
20. Tracheal cell responses to hypoxia. Centanin L., Gorr T.A. and Wappner P. (2010) Journal of Insect Physiology 56: 447-454.
21. Central role of the Oxygen Dependent Degradation Domain of Drosophila HIF/Sima in oxygen-dependent nuclear export. Irisarri M, Lavista Llanos S., Romero N.M, Centanin L, Dekanty A.and Wappner .P (2009) Molecular Biology of the Cell 20: 3878-3887.
22. Regulation of the Drosophila protein Sima by CRM1-dependent nuclear export. Romero N.M., Irisarri M., Roth P., Cauerhff A., Samakovlis C. and Wappner .P (2008) Molecular and Cellular Biology 28: 3410-3423.
23. Cell Autonomy of HIF Effects in Drosophila: Tracheal Cells Sense Hypoxia and Induce Terminal Branch Sprouting. Centanin L, Dekanty A., Romero N.M., Irisarri M., Gorr T A. and Wappner .P (2008) Developmental Cell 14: 547-558.
24. Cellular and Developmental adaptations to hypoxia; a Drosophila perspective. Romero N.M., Dekanty A. and Wappner P. In Oxygen Biology and Hypoxia Ed. by H. Sies and B. Bruene (2007) Methods in Enzymology, 435:123-144.
25. Cloning of hif-1 and hif-2 and mRNA expression pattern during development in zebrafish. Rojas D.A., -Munizaga D.A, Centanin L., Antonelli M., Wappner P., Allende M.L. and Reyes A.E. (2007) Gene Expression Patterns 7: 339-345.
26. Sensing and responding to hypoxia via HIF in model invertebrates. Gorr T.A., Gassmann M. and Wappner P. (2006) Journal of Insect Physiology 52: 349-364.
27. The insulin/PI3K/TOR pathway induces a HIF-dependent transcriptional response in Drosophila by promoting nuclear localization if HIF-1/Sima. Dekanty A., Lavista-Llanos S., Irisarri M., Oldham S. and Wappner P. (2005) Journal of Cell Science 118: 5431-5441.
28. Reversion of lethality and growth defects in Fatiga oxygen-sensor mutant flies by loss of HIF/Sima. Centanin L.; Ratcliffe P.J. and Wappner P. (2005) EMBO Reports 6: 1070-1075.
29. Multiple roles of the F-box-protein Slimb in Drosophila egg chamber development. Muzzopappa M. and Wappner P. (2005) Development 132: 2561-2571.
30. Regulation of Drosophila HIF activity in SL2 cells: Identification of a hypoxia-induced variant isoform of the HIFa homologue gene similar. Gorr T.A.; Tomita T.; Wappner P. and Bunn H.F. (2004) Journal of Biological Chemistry 279: 36048-.36058
31. Control of the hypoxic response in Drosophila by the bHLH-PAS protein Similar. Lavista Llanos S., Centanin L., Irisarri M, Russo D.M., Gleadle J., Bocca S.N., Muzzopappa M, Ratcliffe P.J. and Wappner P. (2002) Molecular and Cellular Biology. 22: 6842-6853.